Abstract
N-particle quantum mechanics described by a sigma model with an N-dimensional target space with torsion is considered. It is shown that an SL(2,R) conformal symmetry exists if and only if the geometry admits a homothetic Killing vector $D^a$ whose associated one-form $D_a$ is closed. Further, the SL(2,R) can always be extended to Osp(1|2) superconformal symmetry, with a suitable choice of torsion, by the addition of N real fermions. Extension to SU(1,1|1) requires a complex structure I and a holomorphic U(1) isometry $D^a I_a{^b} \partial_b$. Conditions for extension to the superconformal group D(2,1;\alpha), which involve a triplet of complex structures and SU(2) x SU(2) isometries, are derived. Examples are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.