Abstract

Flank terraces are subtle, expansive structures on the slopes of many large Martian shield volcanoes. Several terrace formation hypotheses — including self-loading, lithospheric flexure, magma chamber tumescence, volcano spreading, and shallow gravitational slumping — have been suggested. Terraces are not readily visible on photogeological data; consequently, terrace geometry has not yet been comprehensively described. Terrace provenance, therefore, is poorly understood. We used three-dimensional Mars Orbiter Laser Altimeter (MOLA) data to characterise the geometry of these elusive structures, with a view to understanding better the role that flank terraces play in the tectonic evolution of volcanoes on Mars. Terraces have a broad, convex-upward profile in section, and a systematic “fish scale” imbricate stacking pattern in plan. They are visible at all elevations, on at least nine disparate Martian volcanoes. Terrace-like features also occur on three shield volcanoes on Earth, an observation not recorded before. Analysis of a suite of morphometric parameters for flank terraces showed that they are scale-invariant, with similar proportions to thrust faults on Earth. We compared predicted formation geometries to our terrace observations, and found that only lithospheric flexure can fully account for the morphology, distribution, and timing of terraces. As a volcano flexes into the lithosphere beneath it, its upper surface will experience a net reduction in area, resulting in the formation of outward verging thrusts. We conclude, therefore, that flank terraces are fundamental volcanotectonic structures, that they are the surface expressions of thrust faults, probably formed by lithospheric flexure, and that they are not restricted to Mars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call