Abstract
Based on high-resolution bathymetry and geophysical observations, the precise continental wedge geometry along the Chilean margin is analyzed. The data show complex patterns in continental wedge geometry that challenge the most frequently used classification methodology for the convergent margin tectonics. A detailed modeling of the parameters involved in the Non-Cohesive Coulomb Wedge theory reveals a tectonic latitudinal segmentation of the Chilean offshore subduction zone. This segmentation is characterized by a sequence of broad segments with different basal effective friction coefficient and/or internal fluid pressure conditions, which are limited by the presence of bathymetric oceanic highs, fracture zones and Peninsulas. The results suggest a general increase of the fluid pressure inside the continental wedge north of 33°S, which is interpreted as a result of a more pervasive fracturing due to tectonic erosion at the base and within the continental wedge. The tectonic segmentation proposed here shows a close spatial relation with the short-term deformation process associated to the coseismic ruptures of large earthquakes in the Chilean margin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.