Abstract

We study the maximum speed of quantum computation and how it is affected by limitations on physical resources. We show how the resulting concepts generalize to a broader class of physical models of computation within dynamical systems and introduce a specific algebraic structure representing these speed limits. We derive a family of quantum speed limit results in resource-constrained quantum systems with pure states and a finite dimensional state space, by using a geometric method based on right invariant action functionals on [Formula: see text]. We show that when the action functional is bi-invariant, the minimum time for implementing any quantum gate using a potentially time-dependent Hamiltonian is equal to the minimum time when using a constant Hamiltonian, thus constant Hamiltonians are time optimal for these constraints. We give an explicit formula for the time in these cases, in terms of the resource constraint. We show how our method produces a rich family of speed limit results, of which the generalized Margolus–Levitin theorem and the Mandelstam–Tamm inequality are special cases. We discuss the broader context of geometric approaches to speed limits in physical computation, including the way geometric approaches to quantum speed limits are a model for physical speed limits to computation arising from a limited resource.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.