Abstract
The geometry of causal diamonds or Alexandrov open sets whose initial and final events p and q respectively have a proper-time separation τ small compared with the curvature scale is universal. The corrections from flat space are given as a power series in τ whose coefficients involve the curvature at the centre of the diamond. We give formulae for the total 4-volume V of the diamond, the area A of the intersection the future light cone of p with the past light cone of q and the 3-volume of the hyper-surface of largest 3-volume bounded by this intersection valid to O(τ4). The formula for the 4-volume agrees with a previous result of Myrheim. Remarkably, the iso-perimetric ratio 3V34π/(A4π)3/2 depends only on the energy density at the centre and is bigger than unity if the energy density is positive. These results are also shown to hold in all spacetime dimensions. Formulae are also given, valid to next non-trivial order, for causal domains in two spacetime dimensions.We suggest a number of applications, for instance, the directional dependence of the volume allows one to regard the volumes of causal diamonds as an observable providing a measurement of the Ricci tensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.