Abstract
Abstract The relationship of discrete L-algebras to projective geometry is deepened and made explicit in several ways. Firstly, a geometric lattice is associated to any discrete L-algebra. Monoids of I-type are obtained as a special case where the perspectivity relation is trivial. Secondly, the structure group of a non-degenerate discrete L-algebra X is determined and shown to be a complete invariant. It is proved that X ∖ {1} is a projective space with an orthogonality relation. A new definition of non-symmetric quantum sets, extending the recursive definition of symmetric quantum sets, is provided and shown to be equivalent to the former one. Quantum sets are characterized as complete projective spaces with an anisotropic duality, and they are also characterized in terms of their complete lattice of closed subspaces, which is one-sided orthomodular and semimodular. For quantum sets of finite cardinality n > 3, a representation as a projective space with duality over a skew-field is given. Quantum sets of cardinality 2 are classified, and the structure group of their associated L-algebra is determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.