Abstract
Abstract We find the minimal value of the length in de Sitter space of closed space-like curves with non-vanishing non-space-like geodesic curvature vector. These curves are in correspondence with closed almost-regular canal surfaces, and their length is a natural magnitude in conformal geometry. As an application, we get a lower bound for the total conformal torsion of closed space curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.