Abstract

We describe an extended fast-slow analysis for the dual oscillator model (DOM) for bursting oscillations in pancreatic $\beta$-cells, which occur on a wide range of time scales, from seconds to minutes. This wide dynamic range has been suggested to result from the interactions of a very slow metabolic, possibly glycolytic, oscillator and a faster electrical oscillator, itself containing several negative feedback mechanisms with a range of time scales. Although the high dimensionality of the slow subsystem would defeat a straightforward fast-slow analysis, we show that an approximate geometrical analysis that exploits particular features of the DOM and is based on superimposing the bifurcation diagrams of the component oscillators leads to new insights into the functioning of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.