Abstract

We study the formulation of bond-orientational order in an arbitrary two dimensional geometry. We find that bond-orientational order is properly formulated within the framework of differential geometry with torsion. The torsion reflects the intrinsic frustration for two-dimensional crystals with arbitrary geometry. Within a Debye-Huckel approximation, torsion may be identified as the density of dislocations. Changes in the geometry of the system cause a reorganization of the torsion density that preserves bond-orientational order. As a byproduct, we are able to derive several identities involving the topology, defect density and geometric invariants such as Gaussian curvature. The formalism is used to derive the general free energy for a 2D sample of arbitrary geometry, both in the crystalline and hexatic phases. Applications to conical and spherical geometries are briefly addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.