Abstract

The geometrical structure, stability, electronic structure and magnetism of bimetallic clusters AuM2 and Au2M2, where M is 3d transition metal element, are investigated systematically by using the first-principles method based on density functional theory. In contrast to semiconductor clusters, the bimetallic clusters consisting of Au and transition metal elements usually form a large number of low-energy isomers, some of which are very similar in structure. Similar to the pure transition metal cluster, AuM2 and Au2M2 clusters also display dramatic magnetism. The magnetic moment of transition metal element in AuM2 and Au2M2 clusters is either enhanced or weakened with respect to the bulk value, which is closely dependent on the orbital splitting. For the ground state, the magnetic moments of two transition metal elements in AuCr2, Au2Cr2 and Au2Mn2 clusters are anti-parallel, and those in other clusters are parallel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.