Abstract
This paper aims at explaining that a key to understanding quantum mechanics (QM) is a perfect geometrical understanding of the spinor algebra that is used in its formulation. Spinors occur naturally in the representation theory of certain symmetry groups. The spinors that are relevant for QM are those of the homogeneous Lorentz group SO(3,1) in Minkowski space-time R4 and its subgroup SO(3) of the rotations of three-dimensional Euclidean space R3. In the three-dimensional rotation group, the spinors occur within its representation SU(2). We will provide the reader with a perfect intuitive insight about what is going on behind the scenes of the spinor algebra. We will then use the understanding that is acquired to derive the free-space Dirac equation from scratch, proving that it is a description of a statistical ensemble of spinning electrons in uniform motion, completely in the spirit of Ballentine’s statistical interpretation of QM. This is a mathematically rigorous proof. Developing this further, we allow for the presence of an electromagnetic field. We can consider the result as a reconstruction of QM based on the geometrical understanding of the spinor algebra. By discussing a number of problems in the interpretation of the conventional approach, we illustrate how this new approach leads to a better understanding of QM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.