Abstract
Geometric methods are important for researching the differential properties of metric projectors, sensitivity analysis, and the augmented Lagrangian algorithm. Sun [3] researched the relationship among the strong second-order sufficient condition, constraint nondegeneracy, B-subdifferential nonsingularity of the KKT system, and the strong regularity of KKT points in investigating nonlinear semidefinite programming problems. Geometric properties of cones are necessary in studying second-order sufficient condition and constraint nondegeneracy. In this paper, we study the geometric properties of a class of nonsymmetric cones, which is widely applied in optimization problems subjected to the epigraph of vector k-norm functions and low-rank-matrix approximations. We compute the polar, the tangent cone, the linear space of the tangent cone, the critical cone, and the affine hull of this critical cone. This paper will support future research into the sensitivity and algorithms of related optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.