Abstract
With the help of the time-dependent gauge transformation technique, we have studied the geometric phase of a spin-half particle in a rotating magnetic field. We have found that the slow but finite frequency of the rotating magnetic field will make the difference between the adiabatic geometric phase and the exact geometric phase. When the frequency is much smaller than the energy space and the adiabatic condition is perfectly guaranteed, the adiabatic approximation geometric phase is exactly consistent with the adiabatic geometric phase. A simple relation for the accuracy of the adiabatic approximation is given in terms of the changing rate of the frequency of the rotating magnetic field and the energy level space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.