Abstract

The fundamental theory of the geometric phase is summarized in a way suitable for use in molecular systems treated by the Born-Oppenheimer approach. Both Abelian and non-Abelian cases are considered. Applications discussd include the Abelian geometric phase associated with an intersection of two electronic potential-energy surfaces; screening of nuclei by the electrons from an external magnetic field; non-Abelian gauge potentials in molecular systems with Kramers degeneracy; and the coupling between different electronic levels (Born-Oppenheimer breakdown) represented as a gauge potential. Experimental tests for these systems are discussed, as well as a number of experiments on spin systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.