Abstract

We have studied here the geometrodynamics of relativistic electron vortex beams from the perspective of the geometric phase associated with the scalar electron encircling the vortex line. It is pointed out that the electron vortex beam carrying orbital angular momentum is a natural consequence of the skyrmion model of a fermion. This follows from the quantization procedure of a fermion in the framework of Nelson's stochastic mechanics when a direction vector (vortex line) is introduced to depict the spin degrees of freedom. In this formalism, a fermion is depicted as a scalar particle encircling a vortex line. It is here shown that when the Berry phase acquired by the scalar electron encircling the vortex line involves quantized Dirac monopole, we have paraxial (non-paraxial) beam when the vortex line is parallel (orthogonal) to the wavefront propagation direction. Non-paraxial beams incorporate spin–orbit interaction. When the vortex line is tilted with respect to the propagation direction, the Berry phase involves non-quantized monopole. The temporal variation of the direction of the tilted vortices is studied here taking into account the renormalization group flow of the monopole charge and it is predicted that this gives rise to the spin Hall effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call