Abstract

We show that the Reeb vector, and hence in particular the volume, of a Sasaki–Einstein metric on the base of a toric Calabi–Yau cone of complex dimension n may be computed by minimising a function Z on $$\mathbb {R}^{n}$$ which depends only on the toric data that defines the singularity. In this way one can extract certain geometric information for a toric Sasaki–Einstein manifold without finding the metric explicitly. For complex dimension n = 3 the Reeb vector and the volume correspond to the R–symmetry and the a central charge of the AdS/CFT dual superconformal field theory, respectively. We therefore interpret this extremal problem as the geometric dual of a–maximisation. We illustrate our results with some examples, including the Y p,q singularities and the complex cone over the second del Pezzo surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.