Abstract

Knowing the rich presence of active faults in northern Thessaly and the lack of any significant seismic activity since at least the mid-1940s, the 2021 seismic sequence did not surprise us. What did surprise us was the fact that (i) despite the great knowledge of the neotectonic faults in the area, the causative faults were unknown, or almost unknown; (ii) the direction of the 2021 faulting was different than the expected, and given that the focal mechanisms showed almost pure normal dip-slip motion, the extensional main axis was also different than the one we thought we knew for this area; and (iii) besides the co-seismic ruptures that occurred within the Domeniko-Amouri basin and along the Titarissios River valley, there is evidence of rupturing in the alpine basement of Zarkos mountains. After thoroughly reviewing both the alpine and neotectonic structural setting and all the available literature concerning the seismotectonic data and interpretations of the 2021 sequence, including investigations of our own, we end up in a complex tectonic setting with older alpine structures now operating as inherited faults, and we also suggest the possible occurrence of a roughly N-dipping, low-angle, detachment-type fault. This fault runs below Mt Zarkos, reaching at least the Elassona Basin, with splay faults bifurcating upwards from the main fault zone. Following this complexity, rupture of the first mainshock must have chosen a split route reaching the surface through the gneiss rocks of Zarkos and almost (?) reaching the basinal sediments of the local tectonic depressions. This seismic sequence is a perfect case study to shed some light on the tectonic and rupture processes in the context of both geodynamics and seismic hazard assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call