Abstract
AbstractGeocoronal H α and H β intensity measurements using the Wisconsin H α Mapper Fabry‐Perot are used to determine the intensity of the H α cascade component. From basic atomic physics and the work of Meier (), we show that the total cascade in geocoronal H α emission is 0.52 ± 0.03 times the geocoronal H β intensity, I(H β), for solar Lyman series excitation of geocoronal hydrogen. The results are consistent with the H α cascade measurements of Mierkiewicz et al. (), which were determined directly from the analysis of H α line profile measurements, and significantly narrow the range of uncertainty in the cascade measurement. Accounting for cascade is essential in determining exospheric effective temperatures and dynamics from the shape of the geocoronal H α line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.