Abstract

This paper considers the geochemistry of volcanogenic mineralization in the northeastern segment of the Pacific Ore Belt (Northeast Russia). We give new evidence for the compositions and concentrations of trace and rare-earth elements (REE) in the ores of volcanogenic fields: Au-Ag epithermal (of various types and ages), Cu-Mo-Au porphyritic, Au-Bi related to granitoidal intrusions, Sn-Ag subvolcanic and kies polymetallic enriched in Au and Ag, as well as REEs in alkaline volcanic rocks. Geochemical signatures have been compiled for 17 formation types of volcanogenic fields. It was found that the ore-forming fluids in most fields belonged to an NaCl-H2O hydrothermal system that was enriched in Cl relative to F; the values of Y/Ho in the ores of nearly all types correspond with the interval of ratios characteristic for present-day hydrothermal fluids in backarc basins; most of the ores that we studied had near-chondrite spectra with configurations similar to those of the REE spectra in volcanic rock sequences of the andesite-diorite series. Comparative analysis of REE spectra in the distribution of trace elements over classes of gold concentration shows synchronous enrichment of ores in similar sets of trace elements. The high Co/Ni ratio in volcanogenic ores probably reflects the superposition of a later magmatic fluid upon an earlier mineralization. Samples from ores of volcanogenic fields, except for Kuroko, show δCe and δEu varying from negative to mildly positive values, thus indicating low-oxidizing conditions during deposition. It was found for Au-Ag epithermal ores that they are enriched in a wide range of trace elements; they have low concentrations of REEs, the light REEs are more abundant than the heavy ones, and the Eu anomalies vary considerably from small negative to low and high positive values. The results provide evidence of an exhalation hydrothermal origin of the Khotoidokh field. It has been shown that the REEs in the ores of the Bol’shoe field are of the type that is most valuable to industry. The results can be used to deal with practical problems: determining the formation type and evaluating the industrial value of a field; detecting accessory components in ores; and discriminating between the types of geochemical anomalies (in rocks or in soil) and stray fluxes as to the potential of a field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call