Abstract

AbstractThe 1.1 Ga Midcontinent Rift System (MRS) of North America comprises a series of Mesoproterozoic flood basalts and intrusive rocks emplaced in the Lake Superior region. The mafic rocks preserved on the NW flank of Lake Superior offer insights into the early development of the rift. New geochemical data collected from intrusive rocks in the Logan Basin, coupled with improved constraints on timing relationships between units, allow for a better understanding of the geochemical evolution of intrusive rocks therein. The extensive dataset suggests many previously unrecognized relationships between MRS intrusive rocks, indicating multiple, distinct mantle-source characteristics with highly variable crustal contamination histories, implying a complicated magma plumbing system. The data presented here suggest that five geochemically distinct mantle source regions were involved in the emplacement of the Logan Igneous Suite, each with its own distinct contamination history and perhaps different degrees of partial melting. The geochemical variations could suggest either a progressive, relative depletion in the mantle source over time or heterogeneity of the source region. However, based on the model for MRS magmatism presented here, we suggest that units related to the Logan Igneous Suite were tapping a heterogeneous mantle source that varied over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.