Abstract

Speciation calculations for aluminum, in water samples taken from a drainage basin containing acid mine waters, demonstrate a distinct transition from conservative behavior for pH below 4.6 to nonconservative behavior for pH above 4.9. This transition corresponds to the pK for the first hydrolysis constant of the aqueous aluminum ion and appears to be a consistent phenomenon independent of field location, ionic strength, and sulfate concentration. Nonconservative behavior is closely correlated with the equilibrium solubility of a microcrystalline gibbsite or amorphous aluminum hydroxide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.