Abstract
In this paper, we study the spectrum of totally geodesic surfaces of a finite volume hyperbolic 3-manifold. We show that for arithmetic hyperbolic 3-manifolds that contain a totally geodesic surface, this spectrum determines the commensurability class. In addition, we show that any finite volume hyperbolic 3-manifold has many pairs of non-isometric finite covers with identical spectra. Forgetting multiplicities, we can also construct pairs where the volume ratio is unbounded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.