Abstract

Aspergillus section Circumdati includes 27 species, some of which are considered ochratoxin A (OTA) producers. However, there is considerable controversy about their potential OTA synthesis ability. In this work, the complete genomes of 13 species of Aspergillus section Circumdati were analyzed in order to study the cluster of OTA biosynthetic genes and the region was compared to those previously reported in A. steynii and A. westerdijkiae. The results obtained reveal that the genomes of some species in this section, including A. affinis, A. cretensis, A. elegans, A. muricatus, A. pulvericola, A. roseoglobulosus, and A. subramanianii, contain a potentially functional OTA biosynthetic cluster. Therefore, they might be able to synthesize the toxin. On the contrary, A. melleus, A. ochraceus, A. ostianus, A. persii, A. sclerotiorum, A. sesamicola, and A. westlandensis contain a truncated version of the cluster that lacks many of the genes involved in OTA biosynthesis, which might be related to their inability to produce OTA. The gain/loss pattern is different in all species, which suggests that the genetic evolution of this region might be due to independent events.

Highlights

  • Ochratoxin A (OTA) is one of the most important mycotoxins due to its ubiquity as a natural contaminant in food and feed, and it exerts several toxic effects that pose clear risks to human and animal health [1]

  • A. melleus, A. ochraceus, A. ostianus, A. persii, A. sclerotiorum, A. sesamicola, and A. westlandensis contain a truncated version of the cluster that lacks many of the genes involved in OTA biosynthesis, which might be related to their inability to produce OTA

  • The presence of the complete biosynthetic OTA cluster was demonstrated in other Aspergillus section Circumdati species whose genomes, including A. affinis, A. cretensis, A. muricatus, A. pulvericola, A. roseoglobulosus, and A. subramanianii, are available in the JGI database

Read more

Summary

Introduction

Ochratoxin A (OTA) is one of the most important mycotoxins due to its ubiquity as a natural contaminant in food and feed, and it exerts several toxic effects that pose clear risks to human and animal health [1]. Cereals [2], grapes and their derivatives [3], and coffee [4] have been considered the main sources of OTA in the human diet. New insights into OTA occurrence have revealed that dietary exposure to this toxin might be of importance in other products, such as preserved meat and cheese [5]. The evidence of OTA production was first reported in a culture of Aspergillus ochraceus (section Circumdati) [6], and for a long time, this species was considered the main OTA producer worldwide. Metabolic, and phylogenetic study, Frisvad et al [7] described new species included in Aspergillus section Circumdati, and some of them were not included in the A. ochraceus

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call