Abstract

The Surf-3 gene of the unusually tight mouse Surfeit locus gene cluster has been identified as the highly conserved ribosomal protein gene L7a (rpL7a). The topography and juxtaposition of the Surfeit locus genes are conserved for the 600 million years of divergent evolution between mammals and birds. This suggests cis interaction and/or coregulation of the genes and suggests that, within this locus, gene organization plays an important role in gene expression. The further evolutionary conservation of the organization of the Surfeit locus was investigated. A cDNA encoding the Drosophila melanogaster homolog of the Surf-3/rpL7a gene was cloned, was shown to be present as a single copy, and was expressed constitutively at high levels throughout development. Genomic cosmid clones encompassing the gene and its surrounding DNA were isolated. The gene was determined to have five introns, of which two were located in the 5' untranslated region of the gene. The remaining three introns had splice sites at positions equivalent to those found in the Surf-3/rpL7a mammalian homologs. S1 analysis and 5' rapid amplification of cDNA ends both confirmed the start of transcription to occur in a polypyrimidine tract in the absence of a TATA box in the promoter. The genomic region around the Surf-3/rpL7a gene was analyzed by low-stringency hybridization with murine Surfeit gene probes, by partial sequence analysis, and by hybridization of fragments to Northern (RNA) blots. No homologs of other members of the Surfeit gene cluster were detected in close proximity to the D. melanogaster Surf-3/rpL7a gene. However, a gene which was detected directly 3' to the Surf-3/rpL7a gene was shown to encode a homolog of a mammalian serine-pyruvate aminotransferase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call