Abstract

Pediatric high-grade glioma (HGG) is a devastating disease with a two-year survival of less than 20%1. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs) by whole genome, whole exome, and/or transcriptome sequencing. We identified recurrent somatic mutations in ACVR1 exclusively in DIPG (32%), in addition to the previously reported frequent somatic mutations in histone H3, TP53 and ATRX in both DIPG and NBS-HGGs2-5. Structural variants generating fusion genes were found in 47% of DIPGs and NBS-HGGs, with recurrent fusions involving the neurotrophin receptor genes NTRK1, 2, or 3 in 40% of NBS-HGGs in infants. Mutations targeting receptor tyrosine kinase/RAS/PI3K signaling, histone modification or chromatin remodeling, and cell cycle regulation were found in 68%, 73% and 59%, respectively, of pediatric HGGs, including DIPGs and NBS-HGGs. This comprehensive analysis provides insights into the unique and shared pathways driving pediatric HGG within and outside the brainstem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call