Abstract

Radopholus similis, commonly known as the burrowing nematode, is an important pest of myriad crops and ornamentals including banana (Musa spp.) and Citrus spp. In order to characterize the potential role of putative effectors encoded by R. similis genes we compared predicted proteins from a draft R. similis genome with other plant-parasitic nematodes in order to define the suite of excreted/secreted proteins that enable it to function as a parasite and to ascertain the phylogenetic position of R. similis in the Tylenchida order. Identification and analysis of candidate genes encoding for key plant cell-wall degrading enzymes including GH5 cellulases, PL3 pectate lyases and GH28 polygalactouranase revealed a pattern of occurrence similar to other PPNs, although with closest phylogenetic associations to the sedentary cyst nematodes. We also observed the absence of a suite of effectors essential for feeding site formation in the cyst nematodes. Clustering of various orthologous genes shared by R. similis with other nematodes showed higher overlap with the cyst nematodes than with the root-knot or other migratory endoparasitic nematodes. The data presented here support the hypothesis that R. similis is evolutionarily closer to the cyst nematodes, however, differences in the effector repertoire delineate ancient divergence of parasitism, probably as a consequence of niche specialization. These similarities and differences further underscore distinct evolutionary relationships during the evolution of parasitism in this group of nematodes.

Highlights

  • Global crop loss caused by plant-parasitic nematodes approaches ~$100 billion annually [1]

  • We identified twelve genes predicted to encode for SPRY (SP1a and RYanodine receptor) domains, these putative SPRY-containing proteins lack a secretion signal, which is an essential requirement for the protein to be classified as a SPRYSEC ‘effector’

  • In multiple analysis that we have performed, including phylogenetic analysis of single-copy orthologs, analysis of secreted proteins such as cellulase, pectate lyase as well as the housekeeping gpd gene, R. similis appears as a sister taxon of the cyst nematodes

Read more

Summary

Introduction

Global crop loss caused by plant-parasitic nematodes approaches ~$100 billion annually [1]. Based upon their unique life cycles there exists two main categories of plant parasitic nematodes: ectoparasites and endoparasites. The endoparasites are further classified into two broad groups based on their feeding mechanisms, sedentary endoparasites and migratory endoparasites. The two most economically important sedentary endoparasitic nematodes are the root knot nematodes Meloidogyne spp., and the cyst nematodes belonging to the Heterodera and Globodera spp. Genome and transcriptome sequences of several cyst nematodes, such as the soybean cyst nematode H. glycines [2,3] and the potato cyst nematodes, G.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call