Abstract

We screened the recently established draft genome of the early chordate Ciona intestinalis for genes encoding cytoplasmic intermediate filament (IF) proteins. The draft of the tunicate/urochordate genome contains only the five genes (IF-A, IF-B, IF-C, IF-D and IF-F) previously established by cDNA cloning. Three of these IF proteins (IF-D, IF-C, IF-A) were shown to be orthologs of vertebrate IF subfamilies I to III while two proteins (IF-B, IF-F) seemed tunicate specific. This is now firmly established for protein IF-F since the genomic data show that it arises as a fusion protein with a C-terminal annexin domain, a feature not found before in the very large collection of metazoan IF proteins. The results also confirm the previous proposal that urochordates lack orthologs of vertebrate type IV IF proteins. We discuss the striking increase of IF complexity from 5 tunicate to 65 human genes during chordate evolution. Thus the tunicate has a single keratin pair, which is expressed in the epidermis, while the human genome has at least 25 genes each for keratins I and keratins II. Finally there are four normal Ciona annexin genes in addition to the gene encoding the IF-annexin fusion proteins (IF-F).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call