Abstract
Autism is a neurodevelopmental disorder of complex etiology and is amongst the most heritable of neuropsychiatric disorders while sharing genetic liability with other neurodevelopmental disorders such as intellectual disability (ID). Autism spectrum disorders (ASDs) are defined more broadly and include autism, Asperger syndrome, childhood disintegrative disorder and pervasive developmental disorder not otherwise specified. Under the Diagnostic and Statistical Manual of Mental Disorders, 4th Edition Revised (DSM-IVTR), these disorders are grouped together with Rett syndrome (“Rett’s disorder”) as pervasive developmental disorders. However, Rett syndrome has a reportedly distinct pathophysiology, clinical course, and diagnostic strategy (Levy & Schultz, 2009) and will likely be removed in the impending publication of DSM-V (APA, 2010). The new diagnostic manual will formally adopt the single diagnostic category “ASDs”, which is used here. Reported prevalence rates for ASDs range from 20 (Newschaffer et al. 2007) to 116 (Baird et al., 2006) per 10,000 children, and vary in accordance with diagnostic, sampling, and screening criteria. The Centers for Disease Control and Prevention (CDC) suggest that in the United States, the prevalence of ASDs is 1 in 110 (1/70 in boys and 1/315 in girls) (ADDM, 2009). The three primary characteristics of ASDs are communication impairments, social impairments, and repetitive/stereotyped behaviors. The DSM-IVTR, ICD-10, and many other diagnostic instruments require impairment in each of these domains for a diagnosis of autistic disorder. Within the last decade, a number of major technological developments have transformed our understanding of the genetic causes of autism, and the field continues to evolve rapidly. In this chapter, we will review three approaches to identifying genetic factors that contribute to the pathogenesis of ASDs: 1) common variants and genome-wide association studies (GWAS); 2) rare variants and copy number variation (CNV) studies, and 3) familial forms of autism and the role of next-generation sequencing (NGS) methods. Data from all three approaches underscores the conclusion that autism is a highly complex and heterogeneous disorder, involving a multifactorial etiology. Moreover, it is becoming increasingly apparent that autism is not a unitary disorder, and that the spectrum may consist of any number of different autisms that share similar symptoms or phenotypes. This conclusion has important implications for evaluation and treatment, which are discussed in the conclusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.