Abstract

Neutral genetic diversity found in plant species usually leaves an indelible footprint of historical events. Korea’s main mountain range (referred to as the Baekdudaegan [BDDG]), is known to have served as a glacial refugium primarily for the boreal and temperate flora of northeastern Asia. In addition, life-history traits (life forms, geographic range, and breeding systems) influence the within- and among-population genetic diversity of seed plant species. For example, selfing species harbor significantly less within-population genetic variation than that of predominantly outcrossers. A previous study of two Liparis species (L. makinoana and L. kumokiri) emphasizes the role of the abovementioned factors shaping the levels of genetic diversity. Liparis makinoana, mainly occurring on the BDDG and self-incompatible, harbors high levels of within-population genetic diversity (expected heterozygosity, HeP = 0.319), whereas there is no allozyme variation (HeP = 0.000) in L. kumokiri, which is self-compatible and mainly occurs in lowland hilly areas. To determine if this trend is also found in other congeners, we sampled five populations of L. krameri from the southern part of the Korean Peninsula and investigated the allozyme-based genetic diversity at 15 putative loci. The somewhat intermediate levels of within-population genetic variation (HeP = 0.145) found in L. krameri are most likely due to its occurrence in mountainous areas that, despite being outside of the main ridge of the BDDG, still served as refugia, and a self-incompatible breeding system. Management strategies are suggested for L. krameri and L. makinoana based on the levels and distribution of genetic diversity and inbreeding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call