Abstract
The genetical control of F1 heterosis, observed in a cross of desirable Nicotiana tabacum varieties, was investigated by analysing the data of the basic generations, triple test cross-families and random samples of doubled haploids (DH) and single-seed descent (SSD) lines. Analyses of the first-degree statistics revealed a complex control underlying the genetic variation, including the presence of epistasis, linkage, maternal effects and their interactions, in addition to the additive and dominance effects of the genes segregating in the cross. These analyses identified gene dispersion, directional dominance, and duplicate epistasis, as the main causes of heterosis. The triple test-cross analysis also confirmed the presence of non-allelic interactions and indicated that the dominance ratio, although inflated by epistasis, is consistently partial for all the traits. The extent of transgression in the recombinant inbred lines finally established unequivocally that, as in numerous other crosses, gene dispersion and unidirectional, but partial, dominance are the true causes of heterosis in this cross too.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.