Abstract
Polyamines (PAs) are ubiquitous aliphatic amines important and, in many cases, essential for plant growth, abiotic stress response, and tolerance. Here we provide evidence for genetic reprogramming of PA homeostasis that occurs during the de-etiolation, maturation, and senescence of the primary leaf in Hordeum vulgare (barley). We analyzed expression levels of key genes in the anabolic and catabolic branches of PA metabolism throughout the life cycle of etioplasts, at all steps of the functional assembly of the photosynthetic apparatus, and during leaf senescence. The changes in the total PAs titer of the leaf were followed throughout the different developmental stages. Furthermore, we align all three stages of the photosynthetic performance (rapid light-dependent de-etiolation, phase of optimal efficiency, and senescence-induced deterioration) with the changes in PA homeostasis. Finally, we focus on two phases during aging (early and late senescence) and we present their bioenergetic (for example, PSII maximal efficiency, ATPase conductivity) and genetic profiles, with emphasis on sensitive parameters that describe this process for the photosynthetic apparatus and PA metabolism, respectively. In conclusion, the fine tuning of PA homeostasis is regulated by the simultaneous genetic reprogramming of the anabolic and catabolic branches of PA metabolism and adjusts all the developmental changes from de-etiolation to maturation and senescence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.