Abstract

Alternative splicing (AS) is a mechanism of regulation of the proteome via enabling the production of multiple mRNAs from a single gene. To date, the dynamics of AS and its effects on the protein sequences of individuals in a large and genetically unrelated population of trees have not been investigated. Here we describe the diversity of AS events within a previously genotyped population of 268 individuals of Populus deltoides and their putative downstream functional effects. Using a robust bioinformatics pipeline, the AS events and resulting transcript isoforms were discovered and quantified for each individual in the population. Analysis of the AS revealed that, as expected, most AS isoforms are conserved. However, we also identified a substantial collection of new, unannotated splice junctions and transcript isoforms. Heritability estimates for the expression of transcript isoforms showed that approximately half of the isoforms are heritable. The genetic regulators of these AS isoforms and splice junction usage were then identified using a genome-wide association analysis. The expression of AS isoforms was predominately cis regulated while splice junction usage was generally regulated in trans. Additionally, we identified 696 genes encoding alternatively spliced isoforms that changed putative protein domains relative to the longest protein coding isoform of the gene, and 859 genes exhibiting this same phenomenon relative to the most highly expressed isoform. Finally, we found that 748 genes gained or lost micro-RNA binding sites relative to the longest protein coding isoform of a given gene, while 940 gained or lost micro-RNA binding sites relative to the most highly expressed isoform. These results indicate that a significant fraction of AS events are genetically regulated and that this isoform usage can result in protein domain architecture changes.

Highlights

  • The alternative splicing (AS) of pre-messenger RNA is a co-transcriptional process mediated by the spliceosome

  • To assess the complexity of AS in the P. deltoides differentiating xylem, the transcriptome assemblies derived from each biological replicate of 268 individuals of the population were merged into a single reference representing all transcribed genes and transcript isoforms

  • We investigated AS types, quantified their abundance, and the relation between the number of isoforms a gene expresses and the genomic features of that gene

Read more

Summary

Introduction

The alternative splicing (AS) of pre-messenger RNA is a co-transcriptional process mediated by the spliceosome This process can produce multiple messenger RNA (mRNA) isoforms from a single gene via the regulated usage of alternate splice sites during intron removal (Early et al, 1980; Saldi et al, 2016). The NMD pathway targets mRNA transcripts containing stop codons upstream of a terminal exon junction for degradation. These unproductive transcripts serve to modulate the abundance of a gene’s protein product(s) without changing its expression (Schweingruber et al, 2013). Relatively little is known about the dynamics of AS in a genetically diverse population of a species

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.