Abstract

BackgroundWater supply limits agricultural productivity of many crops including lettuce. Identifying cultivars within crop species that can maintain productivity with reduced water supply is a significant challenge, but central to developing resilient crops for future water-limited climates. We investigated traits known to be related to water-use efficiency (WUE) and yield in lettuce, a globally important leafy salad crop, in a recombinant inbred line (RIL) lettuce mapping population, produced from a cross between the cultivated Lactuca sativa L. cv. Salinas and its wild progenitor L. serriola L.ResultsWild and cultivated lettuce differed in their WUE and we observed transgressive segregation in yield and water-use traits in the RILs. Quantitative trait loci (QTL) analysis identified genomic regions controlling these traits under well-watered and droughted conditions. QTL were detected for carbon isotope discrimination, transpiration, stomatal conductance, leaf temperature and yield, controlling 4–23 % of the phenotypic variation. A QTL hotspot was identified on chromosome 8 that controlled carbon isotope discrimination, stomatal conductance and yield under drought. Several promising candidate genes in this region were associated with WUE, including aquaporins, late embryogenesis abundant proteins, an abscisic acid-responsive element binding protein and glutathione S-transferases involved in redox homeostasis following drought stress were also identified.ConclusionsFor the first time, we have characterised the genetic basis of WUE of lettuce, a commercially important and water demanding crop. We have identified promising candidate genomic regions determining WUE and yield under well-watered and water-limiting conditions, providing important pre-breeding data for future lettuce selection and breeding where water productivity will be a key target.

Highlights

  • Water supply limits agricultural productivity of many crops including lettuce

  • Contrasting water‐use patterns identified in wild and cultivated lettuce When grown under well-watered conditions, the wild (L. serriola) and cultivated (L. sativa) parents of the recombinant inbred lines (RILs) showed significant variation in their diurnal pattern of transpiration

  • Leaf temperature did not vary significantly between the two parents, there was a trend for lower leaf temperatures in wild lettuce when compared to the cultivated parent under drought (Fig. 2c), confirming the data from stomatal conductance

Read more

Summary

Introduction

Water supply limits agricultural productivity of many crops including lettuce. Identifying cultivars within crop species that can maintain productivity with reduced water supply is a significant challenge, but central to developing resilient crops for future water-limited climates. We investigated traits known to be related to water-use efficiency (WUE) and yield in lettuce, a globally important leafy salad crop, in a recombinant inbred line (RIL) lettuce mapping population, produced from a cross between the cultivated Lactuca sativa L. cv. Lactuca, L. serriola L. has the greatest sexual compatibility with L. sativa and is the probable wild progenitor [5] These species are fully interfertile, yet they have distinct phenotypes. The natural genetic variation which exists in wild relatives has been explored previously in lettuce to identify genes regulating root architecture [12], seed and seedling traits [13,14,15], shelf life and processability [16], disease resistance [17] leaf and seed morphology [6, 18] and nutritional quality [19] and these have been incorporated into breeding programs [20]. Wild species of lettuce have not been characterised for water-use traits, apart from those associated with root architecture [12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call