Abstract

The polychaete Streblospio benedicti is unusual in that several field populations consist of individuals that exhibit either planktotrophic or lecithotrophic larval development. Planktotrophy in this species involves production of many small ova that develop into feeding larvae with a two- to three-week planktonic period. Lecithotrophy involves production of fewer, larger ova that develop into nonfeeding larvae that are brooded longer and have a brief planktonic stage. Reciprocal matings were performed to investigate genetic variance components and the correlation structure of life-history traits associated with planktotrophy and lecithotrophy. Our objective was to better understand persistence of this developmental dichotomy in Streblospio benedicti, and among marine invertebrates in general. Substantial additive genetic variation (75-98% of total) was detected for the following characters at first reproduction: female length; position of the first gametogenic setiger and first brood pouch; ovum diameter; three traits related to fecundity (numbers of ova per ovary, larvae per brood pouch, and larvae per brood); median larval planktonic period and the presence of larval swimming setae; but not for total number of brood pouches; larval length; larval feeding; and larval survivorship. Based on the unusual geographic distribution of development modes in this species, we hypothesize that the developmental traits have evolved in allopatry and have only recently come into contact in North Carolina. The high additive contribution to variance observed for many traits may be inflated due to (a) nonrandom breeding in nature, and (b) examination of only one component of an age-structured population at one time. Nuclear interaction variance and maternal variance accounted for 84% of the total variation in larval survivorship. This observation supports other empirical studies and theoretical predictions that nonadditive components of variance will increase in importance in individual traits that are most closely tied to fitness. A network of life-history trait correlations was observed that defines distinct planktotrophic and lecithotrophic trait complexes. Negative genetic correlations were present between fecundity and egg size, between fecundity and position of the first gametes, and between larval survivorship and median planktonic period. Positive genetic correlations were detected between fecundity and female size at first reproduction and between planktonic period and the presence of swimming setae. Intergenerational product-moment correlations were negative for larval length and fecundity, planktonic period and egg size, female size and larval survivorship, and fecundity and larval survivorship. If the genetic correlation structure observed in the laboratory persists in the field, it may constrain responses of individual characters to directional selection, and indirectly perpetuate the dichotomies associated with planktotrophy and lecithotrophy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call