Abstract

BackgroundThe uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the mitochondrial anion carrier protein family that play an important role in energy homeostasis. Genetic association studies have shown that human UCP2 and UCP3 variants (SNPs and indels) are associated with obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome. The aim of this study was to examine the genetic association between polymorphisms in UCP2 and UCP3 and metabolic data in dogs.ResultsWe identified 10 SNPs (9 intronic and 1 exonic) and 4 indels (intronic) in UCP2, and 13 SNPs (11 intronic and 2 exonic) and one indel (exonic) in UCP3, by DNA sequence analysis of 11 different dog breeds (n = 119). An association study between these UCP2 and UCP3 variants and the biochemical parameters of glucose, total cholesterol, lactate dehydrogenase and triglyceride in Labrador Retrievers (n = 50) showed that none of the UCP2 polymorphisms were significantly associated with the levels of these parameters. However, four UCP3 SNPs (intron 1) were significantly associated with total cholesterol levels. In addition, the allele frequencies of two of the four SNPs associated with higher total cholesterol levels in a breed that is susceptible to hypercholesterolemia (Shetland Sheepdogs, n = 30), compared with the control breed (Shiba, n = 30).ConclusionThe results obtained from a limited number of individuals suggest that the UCP3 gene in dogs may be associated with total cholesterol levels. The examination of larger sample sizes and further analysis will lead to increased precision of these results.Electronic supplementary materialThe online version of this article (doi:10.1186/1756-0500-7-904) contains supplementary material, which is available to authorized users.

Highlights

  • The uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the mitochondrial anion carrier protein family that play an important role in energy homeostasis

  • We investigate whether the dog UCP2 and UCP3 genes are associated with alterations in metabolism

  • To test the association between the dog UCP2 and UCP3 genes and metabolic data, we determined the genotype of 50 Labrador Retrievers for each of 14 polymorphic sites (10 SNPs and 4 indels) in the UCP2 gene, and examined whether any of the genotypes were associated with biochemical measurements of glucose (GLU), total cholesterol (T-Cho), lactate dehydrogenase (LDH), or triglyceride (TG)

Read more

Summary

Introduction

The uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the mitochondrial anion carrier protein family that play an important role in energy homeostasis. Genetic association studies have shown that human UCP2 and UCP3 variants (SNPs and indels) are associated with obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome. The uncoupling proteins (UCPs) in the mitochondrial inner membrane are members of the mitochondrial anion carrier protein family [1,2]. Based on genetic association studies, UCP2, UCP3, or both are reportedly associated with obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome in humans [4,5,6,7,8,9,10,11]. We investigate whether the dog UCP2 and UCP3 genes are associated with alterations in metabolism

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.