Abstract

SWItch/Sucrose NonFermentable (SWI/SNF) is a set of multi-subunits chromatin remodeling complexes, playing important roles in a variety of biological processes. Loss-of-function mutations in the genes encoding SWI/SNF subunits have been reported in more than 20% of human cancers. Thus, it was widely considered as a tumor suppressor in the past decade. However, recent studies reported that some genes encoding subunits of SWI/SNF complexes were amplified and play oncogenic roles in human cancers. In present study, we summarized the genetic alteration spectrum of SWI/SNF complexes, and firstly systematically estimated both the copy number variations and point mutations of all 30 genes encoding the subunits in this complex. Additionally, the bioinformatics analyses were performed for two significantly amplified genes, ACTL6A and BRD9, to investigate their oncogenic roles in human cancers. Our findings may lay a foundation for the discovery of potential treatment targets in SWI/SNF complexes of cancers.

Highlights

  • SWItch/Sucrose NonFermentable (SWI/SNF) is a set of highly conserved multisubunit complexes [1]

  • The total genetic alteration rate of the SWI/SNF complex is approximately 43% (4,587/10,931), which again emphasized that the genes encoding subunits of SWI/SNF complexes are commonly mutated in human cancers

  • These results suggested that the amplification of distinct genes was the main alteration type in most cancers, and the subunits of SWI/SNF complexes may play an essential oncogenic role in cancers

Read more

Summary

Introduction

SWItch/Sucrose NonFermentable (SWI/SNF) is a set of highly conserved multisubunit complexes [1]. These complexes use the energy from adenosine triphosphate (ATP) hydrolysis to remodel specific nucleosomes in the whole genome [1]. These SWI/SWF complexes could be classified into three categories: canonical BAF (cBAF), PBAF and noncanonical BAF complex (ncBAF or GBAF) [2]. Each SWI/SNF complex is assembled by at least ten subunits encoded by total 30 genes [3] The combinations of these subunits are highly variable, and some subunits are unique to specific complexes. ARID1A, ARID1B, and DPF2 are in cBAF; PBRM1, ARID2, and BRD7 are uniquely in PBAF; and GLTSCR1/GLTSCR1L and BRD9 exist in only ncBAF complexes [4] (Fig 1)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call