Abstract

To better understand the origin of voluminous silicic rocks in a convergent continental margin, we conducted an integrated study in which we have obtained geochronological, mineralogical, and isotopic (including whole-rock Sr–Nd–Pb, in-situ zircon Hf) data of the Heri batholith in West Qinling on the NE Tibetan Plateau. The batholith is composed of metaluminous to weakly peraluminous granodiorites (235–233 Ma) and porphyritic granodiorites (230–223 Ma) with an I-type affinity. Both lithologies share similar major, trace elemental and SrNd isotopic compositions. Detailed elemental data demonstrate that these granodioritic rocks underwent fractional crystallization of hornblende and apatite, with plagioclase (i.e. sieve-textured plagioclase cores) accumulation to some extent. Except for porphyritic granodiorites, the Pb isotopes for other analyzed samples are characterized by high radiogenicity and uniformity ((206Pb/204Pb)t: 17.263–18.472, (206Pb/204Pb)t: 15.571–15.591, and (206Pb/204Pb)t: 38.032–38.304), together with limited variations in initial Sr ((87Sr/86Sr)t: 0.707251–0.708103) and Nd (εNd(t) = −7.1 to −6.3) isotopes with two-stage model ages (TDM2) of 1.58–1.52 Ga. These factors collectively point to a derivation from the Mesoproterozoic basement rocks at the lower crustal level, or a comprehensive mixing of different-age components that generated an average crustal residence age. The SrNd isotopic compositions of the porphyritic granodiorites are strikingly similar to those of granodiorites. Compared with the experimental melt compositions of amphibolites, the Heri granitoids are probably derived from an amphibolitic source under fluid-absent conditions due to the incongruent breakdown of amphibole and biotite. Based on the temporal–spatial distribution of granitic intrusions in West Qinling and the regional tectonic evolution, our interpretation is that the Heri batholith was formed during the initial collision between the North China Craton (NCC) and the South China Craton (SCC), which was accompanied by the closure of the Paleotethyan Ocean. Considering both previously published data and our new data, we propose that the Heri granitoids were mainly generated by the partial melting of lower crustal amphibolites, with minor mantle-derived melts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call