Abstract

Gold deposits occur in greenstone belts world wide, and contribute to anomalously high gold production from Archaean terranes. As in other cratons, Archaean gold mineralization of Western Australia represents a complex array of deposit styles. Despite this, most deposits are clearly epigenetic, and large deposits have a number of features in common, including their strong structural controls, distinctive wallrock alteration (Fe-sulphide, K-mica±albite, CaMgFe carbonates), consistent metal associations (AuAgAsSbWB; low base metals), commonly Fe-rich host rocks, great depth extension and lack of appreciable vertical zonation. These shared characteristics, combined with their ubiquitous occurrence, indicate that Archaean gold deposits had a common origin related to the tectonic evolution of greenstone belts. Auriferous hydrothermal systems were broadly synchronous with regional metamorphism and emplacement of synkinematic granitoids and felsic (porphyry) intrusions. Although these gold systems involved low-salinity, lowdensity, reduced, near-neutral H 2OCO 2 fluids carrying gold as reduced sulphur complexes, the origin of the fluids is equivocal. Most timing evidence and stable isotope data cannot distinguish metamorphic from magmatic (granitoid or felsic porphyry) orggins, but the lack of consistent spatial relationships between specific, volumetrically significant intrusive phases and large gold deposits in a number of cratons strongly favours metamorphic derivation of fluids. The metamorphic-replacement model for gold mineralization involves devolatilization of the lower portions of the greenstone pile, with high geothermal gradients inhibiting significant melting. CO 2 possibly formed by the decarbonation of early alteration, related to mantle degassing along crustal-scale, synbasinal fault zones. Auriferous fluids were channelled along greenstone-scale faults, in part developed during reactivation of crustal-scale faults in a strike-slip regime. Gold deposition occurred largely under greenschist facies conditions (about 300–400°C, 1–2 kb) in response to decreasing gold solubility with declining temperature. However, a major control on gold deposition was fluid/wallrock interaction. Many large deposits formed by sulphidation of Fe-rich host rocks, with synchronous deposition of Fe-sulphides and gold. However, the variable nature of gold-depositing reactions, including lowering of fO 2 and pH, allowed a multitude of small, and some large, deposits to form wherever that fluid circulation occurred. In consequence, several of the relatively small deposits currently worked from open pit are hosted by ultramafic and felsic rocks. There are few constraints on the source of components (Au, S, K, CO 2) added to gold deposits, but even giant deposits such as the Golden Mile, Kalgoorlie could have formed from a realistic greenstone source volume (ca. 8×8×5 km). Convective circulation of fluids could have contributed to the generation of high fluid-rock ratios. On the regional scale, the markedly heterogeneous distribution of large gold deposits, gold productivity and host rocks to deposits can be accommodated by the metamorphic-replacement model. The most favourable conditions for development of auriferous hydrothermal systems operated in younger (ca. 2.7±0.1 Ga) rift-phase greenstones where greatest extension and crustal thinning produced high geothermal gradients, crustal-scale synbasinal faults, and rapid extrusion and burial of volcanics, including abundant komatiites. Iron-rich tholeiitic basalts and dolerites were preferred host rocks for large gold deposits. The least favourable conditions existed in older (ca. 3.5-3.4 Ga) platformphase greenstones, where gentle sagging on submerged continental crust produced eruption of mainly mafic volcanics with few komatiites, commonly in very shallow-water environments. This allowed intense synvolcanic alteration of both gold source rocks and potential host rocks. The generally smaller gold deposits formed mainly in ultramafic or greywacke hosts. Younger (ca. 3.0 Ga) platform-phase greenstones appear intermediate in nature but, unlike other greenstones, have significant epigenetic gold deposits in originally oxide-facies BIF, which were deposited on relatively deep-water platforms. Similar controls appear to exist on a world scale, with gold mineralization peaking at ca. 2.7±0.1 Ga in response to development of major rift zones in thickened, relatively mature continental crust. Interestingly, the giant Witwatersrand goldfield formed at about the same time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call