Abstract
McAfee and Reny (1992) have given a necessary and sufficient condition for full surplus extraction in naive type spaces with a continuum of payoff types. We generalize their characterization to arbitrary abstract type spaces and to the universal type space and show that in each setting, full surplus extraction is generically possible. We interpret the McAfee-Reny condition as a much stronger version of injectiveness of belief functions and prove genericity by arguments similar to those used to prove the classical embedding theorem for continuous functions. Our results can be used to also establish the genericity of common priors that admit full surplus extraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.