Abstract
We consider the generic condition for vectors—both null and non-null—at a fixed pointp of a spacetime, and ask just how generic this condition is. In a general spacetime, if the curvature is not zero at the pointp, then the generic condition is found to be generic in the mathematical sense that it holds on an open dense set of vectors atp; more specifically, if there are as many as five non-null vectors in general position atp which fail to satisfy the generic condition, then the curvature vanishes atp. If the Riemann tensor is restricted to special forms, then stronger statements hold: An Einstein spacetime with three linearly independent nongeneric timelike vectors atp is flat atp. A Petrov type D spacetime may not have any nongeneric timelike vectors except possibly those lying in the plane of the two principal null directions; if any of the non-null vectors in such a plane are nongeneric, then so are all the vectors of that plane, as well as the plane orthogonal to it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.