Abstract

Recent observations of strong vertical thermospheric winds and the associated horizontal wind structures, using the 01(3P-1D)nm emission line, by ground-based Fabry-Perot interferometers in Northern Scandinavia have been described in an accompanying paper (Paper I). The high latitude thermosphere at a height of 200–300 km displays strong vertical winds (30–50m ms −1)of a persistent nature in the vicinity of the auroral oval even during relatively quiet geomagnetic conditions. During an auroral substorm, the vertical (upward) wind in the active region, including that invaded by a Westward Travelling Surge, may briefly(10–30 min)exceed 150 m s −1. Very large and rapid changes of horizontal wind structure (up to 500 m −1 in 30 min) usually accompany such large impulsive vertical winds. Magnetospheric energy and momentum sources generate large vertical winds of both a quasi-steady nature and of a strongly time-dependent nature. The thermospheric effects of these sources can be evaluated using the UCL three-dimensional, time-dependent thermospheric model. The auroral oval is, under average geomagnetic conditions, a stationary source of significant vertical winds (10–40 m s −1). In large convective events (directly driven by a strong momentum coupling from the solar wind) the magnitude may increase considerably. Auroral substorms and Westward Travelling Surges appear to be associated with total energy disposition rates of several tens to more than 100 erg cm −2s −1, over regions of a few hours local time, and typically 2–5° of geomagnetic latitude (approximately centred on magnetic midnight). Such deposition rates are needed to drive observed time-dependent vertical (upward) winds of the order of 100–200m s −1.The response of the vertical winds to significant energy inputs is very rapid, and initially the vertical lifting of the atmosphere absorbs a large fraction (30% or more) of the total substorm input. Regions of strong upward winds tend to be accompanied in space (and time) by regions of rather lower downward winds, and the equatorward propagation of thermospheric waves launched by auroral substorms is extremely complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.