Abstract

Large-scale deletions of human mitochondrial DNA (mtDNA) are a common cause of mitochondrial diseases. In order to prevent and treat these mitochondrial diseases, it is important and necessary to understand the mechanisms behind the generation of these deletions. Generally, there exist three kinds of large-scale deletions: deletions almost occur within two direct repeats with identical sequences (class I deletions), deletions are flanked by imperfect repeats (class II deletions) and by no direct repeats (class III deletions). Two major hypotheses are suggested to generate these deletions: replication for class I/II deletions through slipped mispairing between two repeats, and repair mainly for class II/III deletions mediated by mtDNA double-strand breaks. It seems possible that these two mechanisms work together as a powerful and complementary system to compensate for their defects in the generation of all these deletions, not respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.