Abstract

The basis is laid out for a theory relating various phenomena in the solar atmosphere, including localized concentrations of magnetic field at the bases of coronal magnetic arches, chromospheric spicules, twisted coronal magnetic flux tubes, and flows of energy carried by Alfven waves propagating upward into the corona. The structure of photospheric currents localized in the vicinity of supergranule boundaries and excited by convective motions is studied. These currents exist primarily in a “dynamo layer” of sharply enhanced transverse conductivity, which forms in the weakly ionized thermal photospheric plasma located in the solar gravitational field. The motions of the electrons and ions in this layer have appreciably different characters: the ions are collisionly driven by the flows of neutral atoms, while the electrons drift in the crossed electric and magnetic fields. The electric field supporting the current arises due to the polarization of the electrons and ions. This field also gives rise to Alfven perturbations that propagate upward into the corona, together with their associated longitudinal currents. The character of this “loading” makes the system of fields and currents uniquely defined. Moreover, the momentum flux carried by these Alfven waves should be transferred to the cool chromospheric gas, facilitating the vertical ejection of this gas in the form of spicules, as was first proposed in 1992 by Haerendel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call