Abstract

Community land model or common land model (CLM) describes the exchange of the fluxes of energy, mass and momentum between the earth's surface and the planetary boundary layer. This model is used to simulate the environmental changes in China. Hence, it requires a complete parameters field of the land surface. The present paper focuses on making the surface datasets of CLM in China. In the present paper, vegetation was divided into 39 Plant Function Types (PFTs) of China from its classification map. The land surface datasets were created using vegetation type, five land cover types (lake, wetland, glacier, urban and vegetated), monthly maximum Normalized Difference Vegetation Index (NDVI) derived from SPOT_VGT data and soil properties data. The percentages of glacier, lake and wetland were derived from their own vector maps of China. The fractional coverage of PFTs was derived from China vegetation map. Time-independent vegetation biophysical parameters, such as canopy top and bottom heights and other vegetation parameters related to photosynthesis, were based on the values documented in literatures. The soil color dataset was derived from landuse and vegetation data based on their correspondent relationship. The soil texture (clay%, sand% and silt%) came from global dataset. Time-dependent vegetation biophysical parameters, such as leaf area index(LAI) and fractional absorbed photosynthetically active radiation(FPAR), were calculated from one year of NDVI monthly maximum value composites for the China region based on equations given in Sellers <i>et al</i>. (1996a,b) and Los <i>et al</i>. (2000). The resolution of these datasets for CLM is 1km.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.