Abstract

The generation of available potential energy (APE) in the space-time domain in January and July in a present-day climate simulation with a general circulation model (GCM) is compared with observations. An attempt is made to explain the differences. The generation is computed from the fields of diabatic heating and temperature. The heating is computed with the residual method, using UKMO (United Kingdom Meteorological Office) Unified Model GCM circulation data and ECMWF (European Centre for Medium-Range Weather Forecasts) initialized analyses for the period 1989–1992. The global value of the generation of APE is about 35% larger in the GCM climate than the value computed from the analyses. This is mainly because the generation of transient eddy APE in the GCM is too large, due to the more than 40% too large generation of transient eddy kinetic energy by baro-clinic processes. In most of the extratropics the local contribution to the generation of transient eddy APE in the GCM climate is more than twice as large as the contribution computed from the analyses. A possible qualitative explanation for this difference is presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call