Abstract

Micro-cutting is a material removal mechanism with cutting debris generation, where the condition monitoring of the mechanism is important in a wear process. As a useful technique, wear debris analysis has been widely adopted for identifying the wear mechanisms in a running machine. However, there is no corresponding relationship between wear particle features and wear conditions. This paper investigates the generation mechanism of cutting debris by simulating a micro-cutting process. In particular, this study is to establish a quantitative relationship between their morphologies and cutting conditions. A three-dimensional model with a rigid pyramid sliding on the surface of #45 steel has been developed. The deformation and failure criteria of the steel are the Johnson–Cook and shear failure model, respectively. The conditions for producing cutting wear debris are studied and then the morphological features of wear debris are extracted. The main findings are as follows: (1) the critical conditions for cutting wear particle generation is jointly determined by the attacking angle and the cutting depth; (2) the width and curvature of cutting wear debris are mainly correlated with the normal load, which determines the indentation depth of the pyramid; (3) the curvature of cutting wear debris depends mainly on the sliding velocity. The understanding of the relationship between the cutting wear conditions and the morphologies of wear debris is useful for supporting debris-based wear monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call