Abstract
The reactive chemical species generated by non-equilibrium plasma under atmospheric pressure conditions are key enablers for many emerging applications spanning the fields of biomedicine, manufacturing and agriculture. Despite showing great application potential, insight in to the underpinning reactive species generation and transport mechanisms remains scarce. This contribution focuses on the spatiotemporal behaviour of reactive nitrogen species (RNS) created and transported by an atmospheric pressure air surface barrier discharge (SBD) using both laser induced fluorescence and particle imaging velocimetry measurements combined with experimentally validated numerical modelling. It was observed that highly reactive species such as N are confined to the discharge region while less reactive species such as NO, NO2 and N2O closely followed the induced flow. The concentration of key RNS was found to be in the 10-100 ppm range at a position of 25 mm downstream of the discharge region. A close agreement between the experimental and computational results was achieved and the findings provide a valuable insight in to the role of electrohydrodynamic forces in dictating the spatiotemporal distribution of reactive chemical species beyond the plasma generation region, which is ultimately a key contributor towards downstream treatment uniformity and application efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.