Abstract
Hot-carrier stressing carried out on conventional and MDD n-MOS transistors under low gate voltage conditions (V/sub g/<or=V/sub d//4) is discussed. Following the stress, the devices were subjected to short alternate phases of electron and hole injection into the oxide in order to identify the damage species generated. It is shown that the damage created consists principally of hole and electron oxide traps. This is confirmed using the charge pumping technique. Maximum damage is obtained for conditions of maximum hole injection, indicating that hot holes are responsible for both types of defects. Comparison with maximum interface state damage shows that degradation due to electron traps can be significantly greater than interface state creation in the stressing of n-MOS devices at high drain voltages. The damage is shown to be localized. Two-dimensional simulation of localized charge placed close to the drain junction suggests that equal quantities of positive and negative charge might be created by this stressing. Measurements of capture cross sections for electron trapping reveal two cross sections, sigma (1) approximately=3*10/sup -15/ and sigma (2) approximately=3*10/sup -16/ cm/sup 2/.<<ETX>>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.