Abstract

ABSTRACTWe present in this paper a generalized version of the method of equal areas (MEA) that is well suited for the design of sum‐of‐cisoids (SOC) simulators for narrowband mobile Rayleigh fading channels characterized by any type of Doppler power spectral densities (DPSDs). Unlike the original MEA, the generalized MEA (GMEA) can be applied to the simulation of fading channels with asymmetrical DPSDs. This is an important feature because the simulation of such channels is of great interest for the laboratory analysis of mobile communication systems under non‐isotropic scattering conditions. We show that irrespective of the underlying DPSD, the GMEA results in a very good approximation to the autocorrelation function, average Doppler shift, Doppler spread, and envelope distribution of the channel. We compare the performance of the GMEA with that of the Lp‐norm method (LPNM), which is the method that has been most widely used for designing SOC simulators for fading channels with arbitrary DPSDs. The obtained results demonstrate that the performance of the GMEA measures up to that of the LPNM. In addition, the results show that the determination of the model parameters is easier and less time‐consuming when applying the GMEA. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.