Abstract

The master field is the large N limit of the Yang–Mills measure on the Euclidean plane. It can be viewed as a non-commutative process indexed by loops on the plane. We construct and study generalized master fields, called free planar Markovian holonomy fields which are versions of the master field where the law of a simple loop can be as more general as it is possible. We prove that those free planar Markovian holonomy fields can be seen as well as the large N limit of some Markovian holonomy fields on the plane with unitary structure group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.